Influence of peritubular protein on solute absorption in the rabbit proximal tubule. A specific effect on NaCl transport.
نویسندگان
چکیده
The effect of removal of peritubular protein on the reabsorption of various solutes and water was examined in isolated rabbit proximal convoluted tubules (PCT) perfused in vitro. In 22 PCT perfused with ultrafiltrate (UF) and bathed in serum, volume absorption (Jv) was 1.44 nl/mm per min and potential difference (PD) was -3.6 mV. When these same PCT were bathed in a protein-free UF, Jv was reduced 38% without a change in PD. Simultaneous measurements of total CO2 net flux (JTCO2) and glucose efflux (JG) showed that less than 2% of the decrease in JV could be accounted for by a reduction in JTCO2 and JG, suggesting that removal of peritubular protein inhibited sodium chloride transport (JNaCl). Therefore, in eight additional PCT, JNaCl was measured, in addition to PD, Jv, JG, and JTCO2. In these PCT, the decrease in total solute transport induced by removal of bath protein was 201.7 +/- 37.5 posmol/mm per min. JG decreased slightly (9.1 +/- 3.9 posmol/mm per min); NaHCO3 transport did not change (9.2 +/- 6.6 posmol/mm per min); but JNaCl decreased markedly (160.6 +/- 35.7 posmol/mm per min). 80% of the decrease in Jv could be accounted for by a decrease in JNaCl. In 13 additional PCT perfused with simple NaCl solutions, a comparable decrease in Jv and JNaCl was observed when peritubular protein was removed without an increase in TCO2 backleak. In summary, removal of peritubular protein reduced Jv and JNacl, but did not significantly alter PD, JG, JTCO2, or TCO2 backleak. The failure to inhibit JG and JTCO2, known sodium-coupled transport processes, indicates that protein removal does not primarily affect the Na-K ATPase pump system. Furthermore, since PD and TCO2 backleak were not influenced, it is unlikely that protein removal increased the permeability of the paracellular pathway. We conclude that protein removal specifically inhibits active transcellular or passive paracellular NaCl transport.
منابع مشابه
Sodium, bicarbonate, and chloride absorption by the proximal tubule.
Proximal tubules are lined with epithelial cells that contain Na-K-ATPase in their basolateral cell membrane. The luminal cell membrane contains transport proteins that couple movement of many solutes to the active transport of sodium. The cells are connected by low-resistance junctional complexes that permit passive movement of solutes via a paracellular shunt pathway. Acidification is mediate...
متن کاملCharacteristics of NaCl and water transport in the renal proximal tubule.
Renal proximal tubular transport of salt and water has been examined using isolated perfused rabbit tubules. In this method direct measurements can be made under controlled conditions not readily achieved in vivo. The results are in general agreement with previous micropuncture studies in other species, supporting the validity of both sets of measurements. In the present studies, absorption of ...
متن کاملBicarbonate-water interactions in the rat proximal convoluted tubule. An effect of volume flux on active proton secretion
The effect of volume absorption on bicarbonate absorption was examined in the in vivo perfused rat proximal convoluted tubule. Volume absorption was inhibited by isosmotic replacement of luminal NaCl with raffinose. In tubules perfused with 25 mM bicarbonate, as raffinose was increased from 0 to 55 to 63 mM, volume absorption decreased from 2.18 +/- 0.10 to 0.30 +/- 0.18 to -0.66 +/- 0.30 nl/mm...
متن کاملFlow-dependent transport in a mathematical model of rat proximal tubule.
The mathematical model of rat proximal tubule has been extended to include calculation of microvillous torque and to incorporate torque-dependent solute transport in a compliant tubule. The torque calculation follows that of Du Z, Yan Q, Duan Y, Weinbaum S, Weinstein AM, and Wang T (Am J Physiol 290: F289-F296, 2006). In the model calculations, torque-dependent scaling of luminal membrane trans...
متن کاملEffect of formate on volume reabsorption in the rabbit proximal tubule.
Studies on microvillus membrane from rabbit kidney cortex suggest that chloride absorption may occur by chloride/formate exchange with recycling of formic acid by nonionic diffusion. We tested whether this transport mechanism participates in active NaCl reabsorption in the rabbit proximal tubule. In proximal tubule S2 segments perfused with low HCO-3 solutions, the addition of formate (0.25-0.5...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 68 2 شماره
صفحات -
تاریخ انتشار 1981